Tuesday, August 15, 2023

Super Image Resolution By Artificial Intelligence Deep Learning

 Artificial Intelligence Super Image Resolution

super image

Upscale From 565 x 559 To 2260 x 2236

Super Image Resolution Artificial Intelligence Deep Learning


Super Resolution Image By Deep Learning Library EDSR_x4 :-

import cv2
from cv2 import dnn_superres

# initialize super resolution object

sr = dnn_superres.DnnSuperResImpl_create()

# read the model

path = 'EDSR_x4.pb'
sr.readModel(path)

# set the model and scale

sr.setModel('edsr', 4)

# if you have cuda support

sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

# load the image

image = cv2.imread('../MessageMP3/lowimg.jpg')

# upsample the image

upscaled = sr.upsample(image)

# save the upscaled image

cv2.imwrite('../MessageMP3/high.jpg', upscaled)

# traditional method - bicubic

bicubic = cv2.resize(image, (upscaled.shape[1], upscaled.shape[0]), interpolation=cv2.INTER_CUBIC)

# save the image

cv2.imwrite('../MessageMP3/highbicube.jpg', bicubic)

 

Super Resolution Image By Deep Learning Library LapSRN_x8 :-

import cv2
from cv2 import dnn_superres

# initialize super resolution object

sr = dnn_superres.DnnSuperResImpl_create()

# read the model

path = 'LapSRN_x8.pb'
sr.readModel(path)

# set the model and scale

sr.setModel('lapsrn', 8)

# if you have cuda support

sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

# load the image

image = cv2.imread('MessageMP3/lowimg.jpg')

# upsample the image

upscaled = sr.upsample(image)

# save the upscaled image

cv2.imwrite('MessageMP3/high.jpg', upscaled)

# traditional method - bicubic

bicubic = cv2.resize(image, (upscaled.shape[1], upscaled.shape[0]), interpolation=cv2.INTER_CUBIC)

# save the image

cv2.imwrite('MessageMP3/highbicube.jpg', bicubic)

Super Resolution Image By Deep Learning Library FSRCNN_x3 :-

import cv2
import matplotlib.pyplot as plt

img = cv2.imread("../MessageMP3/lowimg.jpg")
sr = cv2.dnn_superres.DnnSuperResImpl_create()

path = "FSRCNN_x3.pb"
sr.readModel(path)
sr.setModel("fsrcnn",3)
result = sr.upsample(img)

cv2.imwrite("../MessageMP3/highimg1.jpg",result)

Super Resolution Image By Deep Learning Library FSRCNN_x4 :-

import cv2
import matplotlib.pyplot as plt

img = cv2.imread("../MessageMP3/lowimg.jpg")
sr = cv2.dnn_superres.DnnSuperResImpl_create()

path = "FSRCNN_x4.pb"
sr.readModel(path)
sr.setModel("fsrcnn",4)
result = sr.upsample(img)

cv2.imwrite("../MessageMP3/highimg1.jpg",result)

Monday, August 14, 2023

MySQL Database and Table Query

MySQL Database and Table Query For Getting Desired Result.


Rename A Table MySQL :-
rename TABLE super_category to category

Rename A Table Column Name MySQL :-
ALTER TABLE category change name category_name varchar(50)

Create Table Copy with Data without inherit indexes and auto_increment:-
CREATE TABLE master_category SELECT * FROM category

Create Table Copy only Structure without Data inherit indexes and auto_increment :-
CREATE TABLE master_category like category

One Table to Another Table Copy Selected Column Data :-
INSERT INTO master_category(description, create_date)  
SELECT description,create_date FROM category
One Table to Another Table Copy All Data :-
INSERT master_category SELECT * FROM category
Create Table with Selected Column Copy from Another Table with Data :-
CREATE TABLE category SELECT id, category_name FROM super_category
Create Table with Selected Column Copy from Another Table only Structure :
CREATE TABLE super_category SELECT id, category_name FROM category limit 0
One Database to Another Database Create Table Copy with Data  :-
CREATE TABLE profile.master_category SELECT * FROM king.category
One Database to Another Database Create Table Copy Structure  :-
CREATE TABLE profile.super_category like king.category

One Database Table Selected Column Data Copy to Another Databse Table :-
INSERT INTO profile.super_category(description, create_date)  
SELECT description,create_date FROM king.category
Delete Table All Records :-
TRUNCATE TABLE master_category
Delete Complete Table :-
DROP TABLE master_category
Add New Column in Existing Table :-
ALTER TABLE super_category ADD created_at DATETIME
ALTER TABLE super_category ADD sub_category VARCHAR(100) NOT NULL
ALTER TABLE super_category ADD active BOOLEAN DEFAULT TRUE
ALTER TABLE super_category ADD stock int(11) DEFAULT 0

Delete Selected Column from Existing Table :-
ALTER TABLE super_category DROP created_at
ALTER TABLE super_category DROP sub_category
ALTER TABLE super_category DROP active
Add a Value to a Selected Column for all records :-
update super_category set stock=10
Add DEFAULT value for Selected Column :-
ALTER TABLE super_category ALTER stock SET DEFAULT 15
ALTER TABLE super_category MODIFY stock INT NOT NULL
ALTER TABLE super_category MODIFY stock INT DEFAULT 0
Delete a Default Value From a Column :-
ALTER TABLE super_category ALTER stock DROP DEFAULT
Add Auto Increment to Selected Column :-
ALTER TABLE category AUTO_INCREMENT=1000
Create a View :-
Create view tbl_category as select * from category

Show a View :-
select * from tbl_category

Conditional Sum for Employee PaySlip Record How many Times :- 
SELECT sum(if(emp_system_code='EMP-008',1,0)) as "SANAT DE",
sum(if(emp_system_code='EMP-002',1,0)) as AVALEONG
FROM paysilp_employee_details

Find duplicate values in one column :-
SELECT * FROM contacts ORDER BY email
SELECT email,COUNT(email) FROM contacts GROUP BY email HAVING COUNT(email) > 1
Find duplicate values in multiple columns :- 
SELECT first_name, COUNT(first_name),last_name,COUNT(last_name),email,
COUNT(email) FROM contacts GROUP BY first_name,last_name,email
HAVING  COUNT(first_name) > 1 AND COUNT(last_name) > 1 AND COUNT(email) > 1;

Sunday, August 13, 2023

R Language Fetching Data From MySql Table

 


R Language How to Get Data From MySql  Table :


Step : 1

install.packages("RMySQL")

library("RMySQL")
Step : 2

Create a connection Object to MySQL database.
We will connect to the sample database named
"DB_school" that comes with MySql installation.

mysqlconnection = dbConnect(MySQL(),user='root',password='',dbname='DB_school',
                  host='localhost')
Step : 3
View List the tables available in this database.
dbListTables(mysqlconnection)
Step : 4
Query the "register" tables to get all the rows.
result = dbSendQuery(mysqlconnection, "select * from registerdb")
Step : 5

Store the result in a R data frame object. n = 5 is used to
fetch first 5 rows.

data.frame = fetch(result, n = 5)
print(data.frame)
Step : 6
We can pass any valid select query to get the result.
result = dbSendQuery(mysqlconnection, "select * from registerdb where YYYY = '2010'")
Step : 7
Fetch all the records(with n = -1) and store it as a data frame.
data.frame = fetch(result, n = -1)
print(data.frame)